direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

B03: Dynamische Prallkühlung mit pulsierenden Prallstrahlarrays - unter Querstromeinfluss

TP-LeiterIn:
Dr.-Ing. Frank Haucke (l)

WM:  Arne Berthold, M.Sc. ()
Tel.   (030) 314 24426

Zusammenfassung

Die Untersuchung der dynamischen Prallkühlung in dreidimensionalen Arrayanordnungen soll weiter vorangetrieben werden. Die hohe strömungsmechanische Komplexität bei der Prallstrahlinteraktion soll um den Einfluss eines dynamisch aufgeprägten Querstroms erweitert werden, wodurch die strömungsmechanische Ähnlichkeit zu durchströmten Turbinenschaufeln erhöht wird. Um auch die Ähnlichkeit zur Innengeometrie von realen Turbinenbeschaufelungen weiter zu verbessern, soll ebenso der Einfluss gekrümmter Prallflächen bzw. einer gekrümmten Strömungsführung auf den konvektiven Wärmeübergang näher analysiert werden. In Kooperation mit dem numerischen Teilprojekt B04 und dem regelungstechnischen Teilprojekt B06 wird eine signifikante Verringerung des messtechnischen Aufwands bei den parametrischen Variationen angestrebt.

1. Förderperiode 2012 - 2016

Dynamische Prallkühlung mit pulsiereenden Prallstrahlarrays

TP-LeiterIn:
Prof. W. Nitsche
Dipl.-Ing. I. Peltzer
Prof. D. Peitsch ()

Summary

Fig. 1: Test rig for dynamic impingement cooling.
Lupe

Dynamic impingement cooling is a promising way for more efficient exploitation of cooling air in highly heat charged environments. In many applications the deployed impinging jets are subjected to cross flow superimposed on the flow field of the transverse jets. The present study describes the initial experimental investigations regarding dynamic heat transfer between a flat surface and an array of up to 49 impingement jets, which are dynamically controlled by changing frequency, duty cycle and phasing. A new test rig was designed and manufactured in order to investigate the interactions of adjacent impingement jets and their impact on forced heat transfer. The test rig satisfies the needs of different measurement techniques. Surface measurements using pressure sensors, thermocouples, hot wires, hot films and liquid crystal thermography are planned for investigating the near wall flow field. Furthermore, the test rig is suitable for efficient flow field measurements between jet orifices and the impingement plate using stereoscopic particle image velocimetry.

Fig. 2: Steady blowing case for 5x5 nozzle jet array: Oil flow visualization VS. wall pressure measurements.
Lupe

Many parameters have to be taken into account during the forthcoming experimental investigations. Among others the following parameters have significant impact on heat transfer and will be varied:

·         nozzle jet arrangement

·         nozzle geometry

·         impingement distance

·         coolant mass flow

·         pulse frequency

·         pulse duty cycle

·         phase shift of excitation of adjacent nozzle jets

The following figures deliver an insight into the complexity of the experimental setup as well as into exemplary results.

Fig. 3: Oil flow visualization for 5x5 nozzle jet array: Steady blowing VS. pulsed blowing.
Lupe
Fig. 4: Snapshots for Liquid Crystal Thermography, 5x5 nozzle jet array: Steady blowing VS. pulsed blowing.
Lupe

Publications

Haucke, F.; Nitsche, W.; Wilke, R. & Sesterhenn, J. L., Experimental and Numerical Investigations Regarding Pulsed Impingement Cooling, Deutscher Luft- und Raumfahrt Kongress, Rostock, Germany, 2015

Haucke, F.; Kroll. H.; Peltzer, I. & Nitsche W., Experimental investigation of a 7 by 7 nozzle jet array for dynamic impingement cooling, Active Flow and Combustion Control 2014, 2014, dx.doi.org/10.14279/depositonce-39

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Sprecher

Prof. Dr.-Ing. Rudibert King

Wiss. Koordinator

M.Sc. Christina Riehn
+49 30 314 21422
Raum ER 102

Sekretariat
Steffi Stehr
Sekr. ER 2-1
Raum 107
Hardenbergstr. 36a
10623 Berlin
Tel: 314 23110